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Statistical Study of Digits of Some Square Roots 
of Integers in Various Bases * 

By W. A. Beyer, N. Metropolis and J. R. Neergaard 

Abstract. Some statistical tests of randomness are made of the first 88062 binary digits (or equiva- 
lent in other bases) of In in various bases b, 2 < n < 15 (n square-free) with b = 2, 4, 8, 16 and 
n = 2, 3, 5 with b = 3, 5, 6, 7, and 10. The statistical tests are the x2 test for cumulative frequency 
distribution of the digits, the lead test, and the gap test. The lead test is an examination of the 
distances over which the cumulative frequency of a digit exceeded its expected value. It is related 
to the arc sine law. The gap test (applied to the binary digits) consists of an examination of the 
distribution of runs of ones. The conclusion of the study is that no evidence of the lack of random- 
ness or normality appears for the digits of the above mentioned ,/n in the assigned bases b. It 
seems to be the first statistical study of the digits of any naturally occurring number in bases other 
than decimal or binary (octal). 

l. Introduction. The original interest in this work was motivated by the question 
of whether irrational numbers of the form w.In (n a positive integer, not a square) are 
normal numbers [cf. 11.2 below], in the sense of Borel, and whether in some sense 
they are random numbers. The expansions have been computed, not only in the usual 
bases of 2 (or 8) and 10, but also in those of 3, 5, 6, 7. Some investigators have on 
occasion expressed the belief that 12 may not be normal in base 10 or perhaps in 
base 2. The conclusion of this study is that no evidence has yet appeared of lack of 
normality in In, 2 < n ? 15 (n square-free) with base b = 2, 4, 8, 16 and n = 2, 3, 5 
with b = 3, 5, 6, 7, and 10. (However, an exception might be made in the case of 
(1016)1/2.) Thus there still appears to be no evidence to contradict Borel's statement 
[1]: ". . . we should regard it as extremely probable that all numbers of simple defini- 
tion with the exception of rational numbers, are normal ntimbers." Borel goes on to 
say: ". . . a proof of this fact would be one of the finest advances that could be made in 
our arithmetical knowledge of numbers." 

With regard to randomness, Martin-Lof [13] has given a definition of a random 
infinite sequence in some preassigned base. See also the work of Kruse [10]. By 
definition, the b-ary expansion of In cannot be random for any n. Nevertheless, there 
remains the question of whether there exists a random number test not obviously 
related to .In under which In is not random. 

If an infinite (binary) sequence is not normal, it is not random. However, it could 
be normal without being random; i.e., randomness implies normality, but not con- 
versely. 

Table I summarizes the known (to us) tabulations of square roots of integers. The 
expansions in earlier work are in base 2 or 10; the present work includes these bases 
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as well as several others. The notation x2 in the table represents the usual statistical 
test of the cumulative distribution of digits.** 

This paper discusses the tabulations of 88,062 bits of (.I/n)2, 2 < n < 15; and the 
equivalent for (fln)b with 2 ? n ? 5 and base b = 3, 5, 6, 7, 10. These tabulations 
have been deposited in the UMT file [24]. Statistical studies are made of these digits, 
including the distributions of digits, length of leads, and gaps. 

II. Definitions and Background. 
1. Definition of Random Number Test. A concise formulation and example is given 

of the definition of a random number test based on the work of Martin-Ldf [13]. 
Attention is first restricted to infinite binary sequences. These will be identified 

with binary expansions of numbers on the interval I = [0, 1] (making in the usual 
way the gloss about numbers terminating in a sequence of l's). Let AP, p = 1, 2, ... 
be a sequence of finite sets of even cardinality of rational numbers in I. The set T = 

(p, AP) (p = 1, 2,. . .) is a subset of B x R, where B denotes the set of positive numbers, 
and R the set of rational points on I. Let Bp = U' (=P)[ X2i 1, X2J, where xl, x2, ..., 
X2k(p) are the members of AP. If the set T is a computable subset of B x R (in the 
sense of logic), if BP+1 c BP and if P(n(P=I BP) = 0 where u denotes Lebesgue 
measure, then T is called a random number test with respect to Lebesgue measure. 
(A random-number test is a generalization of the construction of Cantor's middle- 
third set.) 
If x (e I) belongs to n= 1 BP for some T, then x is called nonrandom. Otherwise 

x is said to be random. In [13] it is proved that there exists a universal test Twith 
corresponding Bp such that x E I is nonrandom if and only if x E nP= I Bp. 

An example is now given of a random-number test. The discrimination level 
(described below) is set at .1, but any other level between 0 and 1 could be used. This 
example is modeled from the X2-test for frequency distribution in the binary case. 
The sets AP are defined inductively. Let A1 = J0, 2- , 7 2- , 1}. Let Ak be given, and 
define Ak+ as follows. The rational number q2-(k+3) is assigned to Ak+ 1, provided: 
(1) q is an integer satisfying 0 ? q < 2k+3 _ 1, (2) the interval [q2 (k+3), 

(q + 1)2 + ] is in Bk, (3) if q2 k+) = i /3i22' with /3i = 0 or 1, and 

L 2 - k + 3)2 + ( k + 3)2] 

where n1 = Ej+3 /3i and no = (k + 3)- n, then 

(2ir)"2 { t 1/2e-r/2 d-c < .1. 

If for some nonnegative integers q and j, (q - 1)2-(k+3) and (q + j + 1)2-(k+3) 

are not assigned to Ak + 1, but the set C q2 -(k + 3), (q + 1)2 -(k + 3) . . ,(q + 1)2- (k + 3)} 

is assigned to Ak + 1, then the set C in Ak + 1is replaced by q2 (k+3) and (q +.j + 1)2(k+3) 
It can be shown that the set T = (p, AP) (p = 1, 2, ...) thus constructed satisfies the 
requirements for a random-number test. 

For finite sequences a random-number test is defined as follows. Let Em be a com- 

** For definiteness, it should be remarked that, for minor technical reasons, the various statistical tests 
for the binary expansion of ,In include the integer part of the radical, whereas for expansions in other 
bases, the integer part is omitted. 
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putable sequence of positive rational numbers which is computably convergent to 
zero. Let X be the set of all finite binary sequences. The subset U c b x X is a 
random-number test if (with Up = {xI(p, x) E UD: 

(a) Up+ l c Up , p = 1, 2, 3, ... . 
(b) the number of sequences of length k contained in Up is less than 2kgp for every 

k and tp, 
(c) U is a computable subset (in the sense of logic) of b x X. 

The preceding example is also an example of a random number test for finite se- 
quences. 

2. Normal Numbers. A number x is simply normal in base b if 

lim B(n, j) 1 
n,, n b 

for each of the b possible values ofj = 0, 1, . .. , b - .1, where B(n, j) is the number of 
occurrences ofj in the first n places of the b-ary expansion of x. A number x is normal 
in base b if all of the numbers x, bx, b2x, ... are simply normal in all of the bases 
b, b2, b3 . Schmidt [18] has shown that there exists a number x and bases b, # b2 
such that x is normal in base bI and not normal in base b2. In fact, if b, and b2 are 
spch that there do not exist integers m and n such that bK = bM, then this holds for 
a set of x having the power of the continuum. Thus, it is reasonable to investigate the 
normality of ./n in different bases. 

3. Result of Pblya and Szeg&. Polya and Szeg6 [16, p. 72, Problem 1781 prove the 
following result. Let Pi(j, n) be equal to 1 if the ith digit in the fractional part of the 
expansion of ,In in base b is j and Pi(j, n) 0 otherwise. Then 

I I 
lim 1 E PA k) = 1/b 
l-+00 k= 1 

for every j = 0, 1, . . ., b - 1 and for each i. 
Now if an appropriate version of the ergodic theorem held, with measure replaced 

by density of a set of integers, then it would follow from the above result that the set 
of integers n, for which 

1li 1 
lim l Piji, k) 0 
1-_00 i=1 1 

would have density zero. However, see the remarks of von Miseg [15, pp. 175-176]. 

Ill. Operational Details. 
1. Method Used. The radicals -/n were calculated on Maniac II using Newton's 

formula: Xk+ = 4{Xk + n/Xk), x0 = 1. Multi-precision division is required. The 
standard word length on Maniac II is 43 bits. The Newton iteration was carried out 
11 times, yielding 43 * 2" = 88064 bits. (See references [8], [11], [22], and [23] for 
alternative methods of computing v/n. One should note that the Newton iteration 
in [20], 

Xk+ 1 = Xk(3/2 - nxk/2), 

yields a sequence Xk which converges to 1/I/n. Consideration was given to using a 



458 W. A. BEYER, N. METROPOLIS AND J. R. NEERGAARD 

method based on the longhand algorithm for computing In, using a word of 43 bits 
as an integer.) 

The result was squared for verification. It was found that the last two bits were 
sometimes inaccurate, owing to truncation. Thus, only 88064 - 2 = 88062 bits are 
claimed to be accurate (including the integer part). 

2. Change of Base. The following algorithm was used to convert digits in base 2 
to digits in base b, not a power of 2. It is efficient to first make a conversion to a 
larger base that is a multiple of b. Let A = 243 B = b[43 log 2/log b] where [ ] denotes 
the largest integer. Suppose that the fractional part of .,In is represented by k words 
of 43 bits each. Let lP be the pth digit in the fractional part of ,In in base B and dp 
be the corresponding digit in base A. Then 

k r 

djA-i = ljB-i + R, 
j=1 j=1 

where R < B Write 
k 

I1 + F1 = B E djA-j, 
j= 1 

where F1 < 1 and I1 is an integer. F1 is, generally, a k-word quantity. Then 1 1= '1. 
Write BF1 = I2 + F2, where F2 < 1 and I2 is an integer. Then 12 = I2, etc. 
The l's are converted to the digits (base b) of the fractional part of In by successive 
division by b. 

In the algorithm used here, F1 is replaced by (or rounded to) F1 which is F1 with 
the final word deleted. Then 

BF1 = I2 + F2 

and F2 is replaced by F2 which is F2 with the final word deleted, etc. 
t It can be shown that the number of digits in base b which this procedure yields is 

k[43 log 2/log b], with a rounding error of (1- b43 log 2/logb]/243)-lb-k[43 log 2/log b 

Table 2 gives the values of these quantities for b = 3, 5, 6, 7, and 10; k = 2048. 
3. Machine Time Requirements. The time required for Maniac II to compute 88064 

bits of In was 278 seconds. The time required to square 88064 bits of jn to verify 
the square root varied from 310 to 325 seconds. Each collection of bits was verified; 
the accuracy of the square ranged from 88062 bits to 88068 bits, the latter being 
possible because of implicit zeros beyond the last recorded digits in the radical. 

IV. Results. The digits of (In)' have been calculated for various n and bases b, 
where 1 denotes the number of digits. Table 1 summarizes the extent of these calcula- 
tions. The following sections discuss the tests which have been applied to these digits. 

1. "Lead" Test (arc sine law for last visit to origin). Let Xi (i = 1, 2,...) be a set 
of independent random variables with prob(Xi = 1) = prob(Xi = -1) = 1/2. Let 
S2p = YJP 1 Xi. Let 0 < x < 1 be fixed. Then, according to Feller [6], for large p, 

prob{S2j : 0,] = p, p- 1, . . ., [px]} (2/n)arc sin Ix. 

This test is applied to the first 88062 bits of In for n square-free and 2 < n < 15. 
The results are given in Table 3. The successive bits of /n are regarded as independ- 
ent random variables with Xi 1 -2i where si is the ith bit of In. The second 
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TABLE 2. 
Number of Digits Resulting from Conversion of 2048 43-Bit Words to Base b. 

I 43log 2/log b]' 1 
b (43 log 2/log b] (l-b[43 / 2048[43 log 2/log b] 

3 27 7.6 55296 

5 18 1.77 36864 

6 16 1.43 32768 

7 15 2.15 30720 

10 12 1.3 24576 

TABLE 3. 
Results of "Lead" Test for Binary Digits qf .In. 

P= 
Last visit Length Leading Excess 2 

n to origin(k*) of Lead Digit at 88062 x=k*/88062 TT ar sin v 

2 28586 59476 0 376 .32 .38 

3 658 87404 1 182 .0075 .055 

5 47292 40770 1 142 .54 .53 

6 55014 33048 1 278 .62 .58 

7 13906 74156 1 136 .16 .26 

LO 31344 56718 0 236 .36 .41 

Li 28022 60040 0 540 .32 .38 

L3 13668 74394 0 328 .16 .26 

L4 144 87918 1 582 .0016 .025 

L5 31842 56220 1 462 .36 .41 

column denotes the largest k (k ? 88062) = k* for which X = 0. The third 
column is the length of the lead at k = 88062, namely, 88062 - k*. The fourth col- 
umn gives the digit, 0 or 1, which leads at k = 88062. The fifth column gives the excess 
of the leading digit at k = 88062, i.e., (number of O's in 88062 bits) - (number of l's 
in 88062 bits) in case 0 leads or the negative of this in case 1 leads. The sixth column 
gives x = k*/88062. The seventh column gives the probability that the last return 
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to the origin for a sequence of 88062 random variables described above would have 
had a last visit to origin not later than at k*. None of the probabilities are exceptional, 
although the digits for (14)1/2 are less than the 5% level. 

The results in Table 3 provide illustrations that the probability of such long leads 
(see column 3) is greater than one might intuitively expect. 

Applications of the arc sine law for sojourn times are made in Appendix 1 to results 
reported by Uhler [23] on 1/,/3 and in Appendix 2 to results reported by Stoneham 
[19] on the transcendental "e". 

2. Gap Test. The length of "runs of l's" in the binary expansions of these square 
roots is examined. By a "run of l's" is meant a sequence of l's bounded by O's; i.e., it 
has the form 

*. 01 ... 10 ... or 1... 10 ... or ... 01 .. 1.*** 

(all l's) 

The length of the run is the number of l's in the run. Runs of length 0 are not counted. 
The problem of runs has been investigated by von Mises [15, p. 184]. To quote: 
"The German philosopher, K. Marbe, tried to develop a system based on the idea 

that long runs contradict probability calculus. He investigated painstakingly the 
birth records of four cities, each record containing about 50,000 entries, and searched 
for sequences of male or female newborn children. The longest run he found con- 
sisted of 17 entries of the same sex in a row. He came to the conclusion that there is 
something in the popular belief that after 17 girls have been born in succession the 
next child must be a boy." 

It might be interesting to note that the largest run of l's found in the data below 
(10 records of 88062 entries each) is 18. 

Denote by Q(")(x) the probability of obtaining x runs of l's, each run of length m4 
in a sequence of n symmetric Bernoulli trails (equiprobable, binary, independent). 
(Note that von Mises in [15] uses P(,,m)(x) to denote the corresponding probability 
for the sum of runs of l's and runs of 0's.) Then, as von Mises shows, 

Q(mn)(x) -'(x; n/2m + 2) -e - n_24 2 (n/2m + 2)x/X! 

if n/2" remains finite as n -+ oo. #(x; a) is the Poisson distribution. 
Table 4 gives the data. m is the size of the run of l's. E is the number of runs of 

l's of that size expected in 88062 symmetric Bernoulli trails as calculated from the 
Poisson distribution i/(x; 88062/2'+ 2), or = (n/2m+ 2)1/2 is the standard deviation 
for Q. Since for large n/2m+ 2, t is approximately normally distributed, one standard 
deviation corresponds to a probability of 68.3% for large n/2m+ 2. The remaining 
columns listed the observed counts for I/n. The last column gives the average over 
the 10 square roots. The final line gives the totals. It is noted that the data is what one 
would expect from a random sequence. 

The probability that there are exactly x runs of l's (m ? 1) in a sequence of n sym- 
metric Bernoulli trails is 

^tnOn+ 10 

*** von Mises excludes the latter two in his definition of a run. 
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TABLE 9. 

x% Values of the Cumulative Distribution qf the First 1 Digits of (v10)24. 

I X2 Level 
19866 28.5 .02 
20038 29.1 .02 
20210 29.0 .02 
20382 30.2 .01 
20554 29.5 .02 
20726 29.4 .02 
20898 29.3 .02 
21070 30.6 .01 
21242 29.5 .02 
21414 28.9 *.02 
21586 31.3 .008 
21758 30.0 .02 
21930 29.6 .02 

The referee has kindly supplied a simplified version of our original proof of this: 
Punctuate a list of n O's and l's by putting a comma before and after each run of l's. 
There are n + 1 positions from which to choose 2x commas and thus 

(n+ 1 
V2x 

distinct configurations with x runs. Thus the expected value for the total number of 
runs is (n + 1)/4. (The original method of proof has been extended to treat the problem 
of "clusters" on more general lattices [25].) 

Remark. The expected number of runs of l's of length m is approximately given by 

(1) E Xq, (x; 2m+2) = 2m+2' 

In this connection P. Stein (private communication) has made the following observa- 
tion. Over the full set of 2n binary words the number of runs of l's of length m is given 
by (n/2m+2)2n(1 + (3 - m)/n) for 1 < m ? n - 1. So, on the average, for each of 
the 2n words, the number of runs of l's of length m would be given by (n/2m+2) 
(1 + (3 - m)/n), which agrees fairly well, for large n and small m, with (1). 

3. X2- Testfor Frequencies. The x2 values of the cumulative frequency distributions 
of the first [88062/2k] 2k-ary digits of 1/n, 2 < n ? 15 for 1 ? k < 4 are examined 
(cf. footnote on p. 456). The results are in Tables 5, 6, 7, and 8. In general, significance 
levels [3] are not included unless they are of some interest. For example, the rather 
small level for (V 10) 6 for I - 21,586 is noted. Table 9 lists more detail in this instance. 
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Tables 10, 11, 12, 13, and 14 give the cumulative X2 values for the digit cumulative 
frequency counts of (.,n)' for n = 2, 3, and 5 and b = 3, 5, 6, 7, and 10. The only 
thing unusual here is the rather high level of(1i/5)'o for 1 > 12,000. Additional detail is 
given in Table 15. 

TABLE 15 
x2 Values of the Cumulative Distribution of the First 1 Digits of the Fractional 

Part of(15)1o. 

I /2 level 1 - (level) 
16512 1.078 .99923 .00077 
16608 .9607 .99952 .00048 
16704 1.164 .99895 .00105 
16800 .9774 .99948 .00052 
16896 .9306 .99958 .00042 
16992 1.184 .99888 .00112 

The data for (12)10,8 have been checked against those given by Takahashi and 
Sibuya in [21] in a few places and exact agreement found. This indicates that the 
difficulty they had with several digits given by Uhler [22] was due to a printing error. 

APP)- NI)Ix 1. Sojourn Time for 4's in 1/1i/3. Uhler [23] has commented on the 
deficiency of 4's in the decimal representation of 1/1i/3. Stoneham [19] has remarked 
on the excess of 6's in the decimal representation of the transcendental "e". These 
matters are discussed here in greater detail with reference to the arc sine law for 
sojourn times. 

Let Xi (i = 1, 2, ...) be a sequence of random variables with prob(Xi = k) = 1/n 
for k = 1, 2,5...., n. Let mj{k) be the number of occurrences of k in X1, X2, ..., X;. 

What is the probability that 

(i) mj~k)lj > 1/n 
r for allj = s, s + 1,...,1? 

(ii) mjlk)/j < 1/nf 

I.e., what is the probability that the digit k either always exceeds its expectation from 
s to 1 or else is always less than its expectation from s to 1? It will be shown that the 
probability is the same as for the binary game (n = 2) as given by the arc sine law. 
First, an n-ary game can be regarded as a binary game with "heads" having proba- 
bility p = 1/n and "tails" having probability q = 1-1/n. Define a new variable 
X'kwith prob{X' = -(p/q)112} = q and prob{X'k = (q/p)112} = p. Then E{X'} = 0 
and var{X'k} = 1. Let S. - 1 X . Let mi' be the number of Xi which are positive. 
If SJ > 0, then mJ(q/p)112 > 2-m[)(p/q)112 or miq > ( - m')p, or mj/j > p = 

1/n. Similarly, if SJ < 0, then mj/j < 1/n. 
Now by a theorem of Erdos and Kac [5], since the X'k have a common distribution 

with expectation 0 and variance 1, one has 

prob{ Tj < jx} (2/7r)arc sin Ix, 

where TJ is the number of Sk (1 < k ? j) which are negative (or alternately, which 
are positive). Thus the arc sine law for sojourn times can be used in the case of a 
binary unsymmetric "game". 

Uhler's computation [23] of the decimal digits of 1/1i/3 shows that the 4's are 
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deficient (less than expected number), except at the 40th decimal where the 4's are 
"even," out to at least the 1317th decimal. The probability of this is, according to the 
arc sine law with I = 1317, T1" = 1, x = 2/1317: (2/n)arc sin(2/1317)1/2 = .025. 
This situation deserves further study. 

APPI1l NDIx 2. The Transcendental "e". With respect to the first 60,000 digits of 
transcendental "e", Stoneham [19] states: "A plot for the sixes shows a consistent 
excess above pure chance expectation for 97.7%O of the 60,000 place sample." In an- 
other place he states: "there appears to be a consistent 'excess of sixes' as in the 1938 
report of Fisher and Yates [7]." Actually, Fisher and Yates noted that in a sample of 
15000 decimal digits, chosen from a table of logarithms, there were (1500 + 113) 
sixes, which is not quite the same as the long lead of sixes noted by Stoneham. Stone- 
ham's data together with the list of 2500 decimal digits of "e" given by Reitwiesner 
[17] and Metropolis, Reitwiesner, and von Neumann [14] show that for only 881 
places in the first 60,000 decimal digits the proportion of 6's is less than or equal to 
its expected value. The probability that this occurs, according to the arc sine law for 
sojourn times, given in Appendix 1 is, (2/i)arc sin(881/60000)1/2 .077. 
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